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Abstract
In this master’s project a number of scanner colour calibration methods are eval-
uated for the purpose of establishing a calibration method for a desktop scanner.
A scanner is used when scanning images of homogenous printed areas that subse-
quently are analysed for the measurement of colour mottle in prints. The master’s
project has involved studies of several calibration techniques including artificial
neural networks using Bayesian learning. The results show that a method based
on artificial neural networks using Bayesian learning, and second a method, based
on multiple regression of a 20 term polynomial curve fit, yield similar calibration
accuracy. The latter calibration method is recommended because it is simpler to im-
plement and requires less computational effort. A mean accuracy of ∆Eab < 4 was
achieved in cases when the evaluated printed samples did not show a high amount
of gloss variation, implying that the calibrated scanner-acquired images can be con-
sidered to fulfil the requirements needed for the colour mottle application purpose.
However, when the samples presented a high amount of gloss variation the accuracy
did fall, sometimes dramatically, ∆Eab > 10, suggesting that a scanner in this case
is a less suitable input device.



Skannerkalibrering – En metodjämförelse

Examensarbete

Sammanfattning
I det här examensarbetet utvärderas en rad olika kalibreringsmetoder med avsikt att
finna en metod som kan användas i en bordsskanner. En skanner används för inskan-
ning av homogena tryckta ytor som sedan analyseras för att mäta färgflammighet i
tryck. Examensarbetet innefattar studier av flera kalibreringstekniker inklusive arti-
ficiella neuronnät som använder Bayesiansk inlärning. Resultaten visar att en metod
baserad p̊a artificiella neuronnät med Bayesiansk inlärning, och en annan metod,
baserad p̊a kurvanpassning av ett 20 termers polynom, p̊avisar liknande noggrann-
het i kalibrering. Den sistnämnda kalibreringsmetoden rekommenderas p̊a grund av
att den är enklare att implementera och kräver mindre datorprestanda. En genom-
snittlig noggrannhet av ∆Eab < 4 uppn̊as när provtrycken inte p̊avisar n̊agon större
glansvariation, vilket innebär att de skannade bilderna kan anses uppfylla kraven
som ställs i syfte att konstruera ett program som mäter färgflammighet. Om pro-
verna emellertid p̊avisar en hög glansvariation faller noggrannheten i kalibreringen,
ibland dramatiskt, ∆Eab > 10, vilket antyder att en skanner i det här fallet inte
lämpar sig att användas som ett inläsningsinstrument.
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Chapter 1

Introduction

1.1 Background

Print mottle or reflectance in inhomogeneities in the print is perhaps one of the most
significant aspects of print quality, or rather non-quality to be precise. Today there
exist well known methods, based on image processing, for evaluating print mottle
in monochrome prints, see [13] and [3]. In the existent monochrome methods, the
variation of the reflectance is measured. Further, it is desirable to make equivalent
measurements in colour prints. In colour prints, grey level reflectance is not the only
varying parameter but also the colour hue and colour saturation must be accounted
for when developing a measurement method. Both monochromatic print mottle
and a new method for measuring colour print mottle may use a flatbed scanner as
the input device to obtain grey level or colour readings from the measured print.
Before any measurements of grey level or colour can take place, we must be certain
that the calibration of the flatbed scanner is accurate. The existent calibration
method used by the STFI Mottling Software, measuring grey levels, is accurate
for its purpose, but when measuring colour the calibration must be extended with
colour coordinates.

High accuracy in the calibration process is demanded since colour print mottle
involves measuring the local variations around a point in the (L∗, a∗, b∗) colour
space, then a bad calibration would result in a deformation of the colour space, and
consequently yielding an incorrect value of the measured colour print mottle.

Many articles have been published in this field and we particularly explore ar-
ticles [9], [14], [15], [16], [22] and [27], which also are the starting point of this
master’s project. Hardeberg [9] presents methods for converting device dependent
RGB colour coordinates to device independent colour spaces. One of the presented
methods, the complex method, involving a pre-processing step with a cubic root
and subsequent calibration using multiple regression of a 20 term polynomial, shows
promising results that can be applied on our problem, see Section 1.2. Kang [14]
has thoroughly shown how to calibrate colour scanners using a two step procedure,
where the first step consists of grey balancing RGB values , see Section 3.3, and
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the second step entails calibration using polynomial regression. Kang has also sum-
marized most of the existent calibration techniques in [15], where he also explains
the advantages and disadvantages with each of them. Part of the work carried out
in [22] consist of taking a closer look on what physical characteristics that exist
in a typical flatbed desktop scanner. This is useful information to us, since we
must avoid demanding an accuracy that is not achievable because of the physical
limitations in the scanner. An artificial neural network approach of colour scanner
calibration is made by Vrhel and Trusell in [27] and by Kang and Andersson in [16].

1.2 Problem statement

The main purpose is to propose a calibration method, for a flatbed scanner of today,
that will have an accuracy of ∆E < 5. ∆E is the error difference between the correct
and calibrated value measured as an Euclidean distance in the target colour space,
which in this case is the CIE (L∗, a∗, b∗) colour space, see Sections 2.1.2 and 2.2.
The proposed calibration method should yield adequate precision when scanning
prints on substrates that are different from the IT8 photographs [1], in this case e.g.
printed full tone colours patches.

In this master’s project we attempt to show much better generalization capabili-
ties, than [16], of neural networks. This is accomplished by using Bayesian learning
when training the feed forward neural network, see [5]. The results presented in
[27], do not include any generalization capabilities.

Further, we explore and evaluate the results of the research in calibration tech-
niques and finally attempt to propose a calibration method that will achieve the
desired accuracy. The proposed calibration is aimed to be used in the present re-
search in developing a method for measuring colour print mottle at Swedish Pulp
and Paper Research Institute, STFI.
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Chapter 2

Theory

2.1 Colour vision

2.1.1 Human visual system

The Human Visual System (HVS) has developed into an advanced apparatus over
millions of years of evolution. Despite its complexity, scientists have over the past
years made substantial progress in understanding the physiology of the eye and
thereby forming a foundation on how to define measurement of colour in an in-
dependent way. This chapter begins with a physiological overview of the HVS,
followed by an exploration of the relationship between the HVS and the definition
of physical colour measurement.

First, the meaning of “colour”, in e.g. perceived colour, colour stimulus or chro-
matic illumination, must be clarified depending on the circumstances under which it
is used. The first term refers to our everyday experience of coloured objects, which
involves a phenomenon known as colour constancy. Colour constancy explains our
ability to perceive the same colour under different illumination conditions. For ex-
ample, the illumination on a bright sunny day is about 1000 times stronger than
indoors, but we still perceive the same colours. The next term, colour stimulus,
defines a reference object with a known colour that is used as input in visual ex-
periments. The last term, monochromatic illumination, refers to light sources that
emit light with a fixed wavelength, e.g. Helium-Neon laser emits light at 632.8 nm,
which we perceive as a red colour.

The visual system detects electromagnetic radiation with wavelengths between
400 and 700 nm, see Figure 2.1, which makes up visible light. The light enters the
eye via the Cornea, passing through the Lens and is detected by photoreceptors in
the Retina, see Figure 2.2. The photoreceptors are located in the first layer of the
Retina and are of two distinct types: rods or cones.

Rods have a peak spectral sensitivity at approximately 510 nm and respond to
monochromatic light. There exists around 120 million rods per retina, compared
with the smaller amount of cones, approximately 7 million per retina. Rods are
extremely sensitive to light, which make them suitable for vision at very low light

3



Figure 2.1. The electro magnetic spectrum of visible light.

levels. This is called scotopic vision. The rods are located everywhere in the retina
except at its centre, the fovea, see Figure 2.2. The image of the surrounding environ-
ment we focus on is projected onto the fovea. This constitutes however only about
2 degrees of the visual field. In the fovea, there exists only densely packed cones.
They are responsible for our visual experiences under normal lighting conditions,
photopic vision, and for the perception of colour.

Figure 2.2. A horizontal cross section of the eye seen from above. (From [25]
courtesy of Rydefalk.)

When the illumination level gradually changes from higher to lower conditions,
i.e. from photopic to scotopic vision, both cones and rods make significant contri-
butions to the visual response in the so called mesopic vision form of vision [12].
Rods are more sensitive to shorter wavelengths than cones. An example of this
phenomenon and the activation of mesopic vision is that red flowers that appear
lighter than blue flowers during daylight, will have the opposite appearance at the
end of day. This is also known as the Purkinje phenomenon.

Scientists have through indirect methods [12] shown the existences of three types
of cones: ρ, γ and β. The notations R, G and B or L, M, and S are also sometimes
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used. Each type is sensitive to different wavelengths, where ρ corresponds to the
sensitivity of the yellow-orange part of the spectrum, γ to the green part and β to
the blue-violet part. The different cones are randomly distributed along the retina.
The relative proportion between the ρ, γ and β cones are 40 to 20 to 1. These
asymmetrical ratios depend on the fact that the eye can hardly correct for chromatic
aberration, i.e. the lens acts like a prism where light of different wavelengths hits
the retina in various places. The ρ and γ cones are most sensitive at wavelengths
of 580 and 540 nm, and β cones are receptive at 440 nm. A consequence of this is
that if we focus our eyes on reddish coloured objects with spectral radiation of 560
nm, then surrounding bluish objects will appear blurred.

Different colour sensations are created through either additive or subtractive
colour mixture. Additive colour mixture is based on addition of light of different
wavelengths. The primary colours red, green and blue are added together to match
any colour C. This is governed by Grassman’s law of addition [25] C = R(r) +
G(g) + B(b), where r, g and b are amounts of the primary colours. In subtractive
colour mixture different wavelengths are subtracted or absorbed from the full white
light spectrum. Subtractive colour mixture is done in our everyday perception of
objects around us. Its most common use is in printing, where the primary colours
cyan, magenta and yellow are used as filter of various strengths to produce the
desired colour. The additive colours red, green and blue are the opposite colours to
the subtractive colours cyan, magenta and yellow. Assume that the (R,G,B) colours
are represented as coordinates of equally unit vectors along the x-, y- and z-axis,
in a right hand coordinate system, and that the vectors for R, G and B are (1,0,0),
(0,1,0) and (0,0,1) with black colour in (0,0,0). Then any additive combination of
the (R,G,B) colours will result in an opposite subtractive colour. The added colours
can be mentally visualized as the opposite vertices in a cube, where the primary
colours are the vertices at the end of the axes. The opposite colour vectors C, M,
Y are (0,1,1), (1,0,1), (1,1,0) with the white colour in (1,1,1). Addition of red and
green will yield the colour yellow. A thorough mathematical derivation of additive
and subtractive colour mixture, using a vector space approach, is presented in [26].

2.1.2 Standard observer

The Commission Internationale de l’Eclarairage (CIE) in year 1931 defined the
standard observer. It is an universal standard on how to measure the chromatic
illumination of a scene, i.e. the spectral radiation of a coloured object. The standard
observer lays the foundation for obtaining device independent colour measurements,
e.g. CIEXYZ and CIELAB. These measurements play an important role in this
document when calibrating scanners and measuring colour print mottle.

With the standard observer you obtain tristimulus values (R,G,B), which match
the eye’s spectral response. The tristimulus values should not be confused with
(R,G,B) values used in computer graphics or the notations used for different cones.
The basis for finding tristimulus values is the use of the colour matching functions,
see Figure 2.3.

5



Figure 2.3. The CIE 1931 colour matching functions for r̄, ḡ and b̄ standard 2◦

observer. (From [25] courtesy of Rydefalk.)

The colour matching function represents the amounts of R, G and B of wave-
lengths 700.0, 546.1 and 435.8 nm that are added together according to the laws
of Grassman, to match a colour stimulus of a certain wavelength. This process is
done for the whole visible spectrum, which gives rise to the curves in Figure 2.3.
The viewing angle of the standard observer is the angle between the sides of a cone
where the top vertex is located in front of the eye and the base area constitutes the
observed stimulus. The colour matching function resembles the sensitivities of ρ,
γ and β cones shown in Figure 2.4, but are not known with precision to be used
as colour matching functions [12]. Calculation of R, G and B values are done with
Equation 2.1 where the stimulus spectral power distribution, Φ(λ), is multiplied
with a colour matching function.

R1 =
∫ 700

380
Φ(λ)r̄(λ)dλ, G1 =

∫ 700

380
Φ(λ)r̄(λ)dλ, B1 =

∫ 700

380
Φ(λ)r̄(λ)dλ (2.1)

The spectral power distribution function Φ(λ) is the sum of reflected, transmit-
ted and absorbed light energy. This unit is measured in amounts of power per small
constant-width wavelength interval throughout the visible spectrum.

The tristimulus values (R1, G1, B1) obtained from Equation 2.1 can be seen as a
vector in three dimensions, which can be linearly transformed with a 3x3 matrix, A,
into another vector: (R2, G2, B2)T = A · (R1, G1, B1)T . This transformation is only
valid when A is linearly independent [17], otherwise there exists no inverse matrix
to transform the values back to its original. The same type of transformation can
also be done for the colour matching functions, e.g. (r̄2, ḡ2, b̄2)T = A · (r̄1, ḡ1, b̄1)T .
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Figure 2.4. The relative sensitivity of ρ, γ and β cones.

These transformations may create tristimulus values that not directly correspond
to physical visible values, but have other desirable properties. An example of this
is realized by the CIEXYZ 1931 2◦ observer. The features of the CIEXYZ system
are summarized in [25] as:

• All physically realisable colours give positive values (X, Y, Z).

• Achromatic colours give X = Y = Z.

• The ideal white point is represented by X=Y=Z=100.

• The Y-value is proportional to the luminance of the stimulus.

The CIEXYZ system is much more precise than CIERGB, because the sur-
rounding conditions are also specified. Both spectral reflection factor, R(λ), of the
measured sample and the illumination, S(λ), is taken into account when obtaining
tristimulus values (X, Y, Z), see Equation 2.2. There are different types of standard
illuminants available, see Figure 2.6; a more detailed description of them is found in
[4]. All values are normalized with k, see Equation 2.3, and with a perfect reflect-
ing diffuser, R(λ) = 1, the Y value would have been 100. To only obtain positive
tristimulus values, the colour matching functions seen in Figure 2.5 are chosen with
no negative parts, compared with Figure 2.3, and are calculated as:

X = k

∫ 700

λ=380
R(λ)S(λ)x̄(λ)dλ,

Y = k

∫ 700

λ=380
R(λ)S(λ)ȳ(λ)dλ, (2.2)
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Z = k

∫ 700

λ=380
R(λ)S(λ)z̄(λ)dλ,

k =
100∫

λ S(λ)ȳ(λ)dλ
. (2.3)

Equation 2.2 may also be expressed in discrete form by vector space notation,
see details in [28], as defined by Equation 2.4 where t =(X,Y,Z)T .

t = AT Lr (2.4)

The A matrix contains the sampled colour matching functions of size N × 3,
where N is the number of samples taken. The spectral reflection of an object is
represented by a vector, r, of size N × 1 and the illumination by a diagonal N ×N
matrix, A, where the diagonal contains the sampled standard illuminators.

2.2 Colour spaces

The CIEXYZ system does not correspond to the human perception of colour. In
other words, a change of colour in CIEXYZ is not perceived with the same pro-
portions by humans. To address the problem, the CIE has defined two new colour
spaces, that transform from (X, Y, Z) colour space to the CIE 1976 (L∗, a∗, b∗), and
CIE 1976 (L∗, u∗, v∗), colour spaces. In these three-dimensional spaces, the axes,
(L∗, a∗, b∗), approximately correlate with perceived lightness, chroma and hue of a
stimulus [4]. The most commonly used one in colour printing is CIELAB. CIELUV
is sometimes preferred because of its linear relationship with the (X, Y, Z)-space,
especially when working with additive colour mixing in television and computer
screen applications. Here we only describe the CIELAB and the interested reader
can find more information on CIELUV in [4], [12], and [23]. The Equations for L∗,
a∗ and b∗ are as follows:

L∗ = 116 · f(Y/Yn)− 16, (2.5)

a∗ = 500 [f(X/Xn)− f(Y/Yn)], (2.6)

b∗ = 200 [f(Y/Yn)− f(Z/Zn)], (2.7)

where

f(τ) =


τ1/3 if τ > 0.008856

7.7867 · τ + 16/116 if τ ≤ 0.008856.

(2.8)

L∗ corresponds to the lightness, where black is represented by 0 units and white
by approximately 100 or more units. The a∗ and b∗ coordinates range from about
-100 to +100 units. Xn, Yn and Zn correspond to the white object colour stimulus
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of the standard illuminant used, see Table 2.1. The difference between a reference
stimuli and an estimated stimuli, ∆Eab, e.g. in scanner calibration, is calculated as
the Euclidean distance between coordinate points in the (L∗, a∗, b∗) colour space:

∆Eab =
√

(∆L∗)2 + (∆a∗)2 + (∆b∗)2. (2.9)

In this thesis we treat ∆Eab and ∆E equally. Mean, max and min values are
referrred to as ∆Emean, ∆Emax and ∆Emin.

Table 2.1. The white reference colours for four CIE standard illuminants and two
CIE standard observers.

CIE 1931 standard observer (2◦)
Illuminant Xn Yn Zn

A 109.850 100 35.585
C 98.074 100 118.232
D50 96.422 100 82.521
D65 95.047 100 108.883
CIE 1964 standard observer (10◦)

Illuminant Xn Yn Zn

A 111.144 100 35.200
C 97.285 100 116.145
D50 96.720 100 81.427
D65 94.811 100 107.304

2.3 Scanner calibration

2.3.1 Metamerism

Under certain illumination conditions, we have problems to distinguish between
two colour stimuli, even though the stimuli have varying spectral distributions.
The samples that cause this phenomena are called metamers, see details in [18].
In other words, metamers give rise to the same perceived colour sensation under
a given illumination source. Metamers are said to be metameric for a given light
source and the observer for whom the samples match. If we then change the illumi-
nation to another one, which will cause a change in perceived colour; the difference
corresponds to the amount of metamerism. This physical measurement is referred
to as the CIE metamerism index, see [18], [25]. When calibrating a scanner there is
also a problem with metemeric input, but which is distinguishable by the standard
observer. This is due to different spectral sensor sensitivities and is not possible
to compensate for when establishing a calibration function. However, the situa-
tion could also be the other way around, there could be colours metameric to the
standard observer but discernible by the scanner [28]. This is accounted for when
determining Fscan, see Section 2.3.2.
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2.3.2 Definition of scanner calibration

Calibration of a scanner consists of finding the function from the scanner device
dependent (R,G,B) space to some device independent colour space, in our case
CIEXYZ or CIELAB. This function is often non-linear, especially in the case of
RGB to CIELAB mapping where there is a built in the non-linearity due to the
cubic root in Equation 2.8.

The mathematical definition of a recording procedure is as follows [28]:

zi = H(MT ri), (2.10)

where zi is the recorded value at point i in device dependent coordinates, e.g.
(R,G,B). Matrix M is of size k × 3, with k bands of spectral sensitivity including
the scanner illuminant, and vector ri is the spectral reflectance at spatial point i.
Vector ri is of size k×1, containing k spectral responses. The process of calibrating
a scanner is to determine a function Fscan such that:

t = AT Lr = Fscan(z) (2.11)

for all r ∈ Bscan, where Bscan is the range of detectable reflectance spectra of the
scanner [28]. The transformation Fscan is created by measuring a set of colour refer-
ence patches, e.g. ANSI IT8/7.2 [1], and then finding an appropriate mathematical
expression which reflects the relationship between values read by the scanner and
values obtained from measurement. Standard regression techniques, e.g. least-
squares or singular value decomposition, are then applied [17]. The calibration
procedure is mathematically defined as:

Fscan = arg

min
F

Mq∑
i=1

‖F(ci)− ti‖2

 , (2.12)

where Mq is the number of patches and ‖ · ‖2 usually is the error metric defined
in Equation 2.9. The goal is to achieve such precise calibration, so that error falls
within just noticeable difference, JND. This means in reality that the perceivable
colour difference for two colour samples shown side by side is ∆Eab = 2.3, see [19].
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Figure 2.5. The CIEXYZ 1931 2◦ and CIEXYZ 1964 10◦ standard observer colour
matching functions, x̄, ȳ and z̄. (From [25] courtesy of Rydefalk.)
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Figure 2.6. The relative power distribution of standard illuminants. (From [25]
courtesy of Rydefalk.)

Figure 2.7. The CIELAB coordinate system.
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2.4 Colour print mottle

Monochromatic print mottle refers to unevenness in a printed area due to varying
reflectance properties in the print, that otherwise should appear uniform. The
reason for this may be unevenness in ink transfer in the printing process or optical
effects of the ink in the paper. A measure of print mottle, coefficient of variation
of reflectance, is suggested in [13] as:

CVR = COVR =
σR

R
, (2.13)

where σR is the standard deviation of reflectance and R is the mean value of re-
flectance. The COVR is derived from the law of Weber:

k =
∆I

I
, (2.14)

which describes the ratio between a change in stimulus, ∆I, and stimulus magnitude,
I. The value of k is constant for different stimulus sources, e.g. reflectance in printed
paper, k ≈ 0.22 [13], or perceived luminance level L∗, see Equation 2.5. In other
words, print mottle describes spatial variation, or difference of stimulus, in relation
to some surrounding average stimulus.

The human visual system is also capable of discriminating between contrast
varations of different coarseness in a print [13]. Such type of variations may easily
be studied in the frequency domain using Fourier analysis, see [7]. This suggests
that a Fourier analysis of (R,G,B)- or (L∗, a∗, b∗)-values could be used to measure
print mottle.

The COVR may not always apply properly for low values of R, see [6]. Therefore,
new models have been studied [3] which involves differentiation of Equation 2.5:

dL∗ = c1
dY

Y 2/3
(2.15)

A more general model is also proposed [3]:

m =
σ

Rp + c
(2.16)

Studies made by Fahlcrantz, Johansson and Åslund [3], suggest that the best corre-
lation between calculated and perceived print mottle is approximately yielded when
p = 1/2 (c = 0), which gives rise to the following expression for print mottle:

m =
σ√
R

(2.17)

Print mottle is often studied at different wavelengths by taking the Fourier transform
of reflectance levels in the image. The image is typically divided into different
bandpasses with ranges in millimetres (0.25, 0.5-1, 1-2, 2-4, 4-8, 8-16), where the
best correlation between calculated and perceived print mottle is in the 1-8 mm
wavelength bands [13].
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Colour print mottle extends the variations in reflectance to include variations in
the (L∗, a∗, b∗) space. An expression for colour variations is proposed by Mizes [20]
as:

mcm =
√

(kL σL)2 + (ka σa)2 + (kb σb)2, (2.18)

where kL, ka and kb are determined on empirical basis by visual evaluation of print
mottle. (the * has been removed in Equation 2.18 for clarity). The fractions between
kL, ka and kb are empirically estimated to be about 9:3:1 [20].

Calculation of colour print mottle is carried out by Fourier transformation of
each of the components in (L∗, a∗, b∗), and the Fourier responses within the range
most detectable by the human visual system, fvisual, is added together to give
Equations:

σL∗ = F(L∗)fvisual

σa∗ = F(a∗)fvisual
(2.19)

σb∗ = F(b∗)fvisual
.
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Chapter 3

Methodology

In this chapter we describe the apparatus, methods and materials that are needed
to accomplish the desired goal, see Section 1.2. To find the calibration function
in Equation 2.12, reference values are needed to verify the accuracy of the calibra-
tion. Therefore, a high accuracy instrument is used for this purpose, see Section
3.1. Then, to test the generalization capabilities of the calibration, the verification
material is used, see Section 3.2.1, which also is measured with the same instrument.

When seeking the calibration function, Fscan, a number of methods are evalu-
ated. The initial type of calibration method that we want to investigate is a linear
calibration function, see Section 3.4.1. The purpose is that we want to find out if
Fscan is linear. If that is not the case, we further evaluate more complex methods,
a non-linear function, see Section 3.4.3, and an artificial neural network, see Section
3.4.2. The former method has been used before and we want to verify and evaluate
the previous results. The latter method, which is completely different from the oth-
ers described, is evaulated to see if it is a feasilbe calibration method and to verify
the results from the non-linear calibration method.

3.1 Apparatus

Reference and verfication values in both (X, Y, Z) and (L∗, a∗, b∗) coordinates are
obtained with a high accuracy spectrophotometer “GREGTAG SPM 100-II”. The
mathematical transformation, (see Equations 2.5, 2.6 and 2.7), from measured
(X, Y, Z) values to calculated (L∗, a∗, b∗) values, differs maximally 0.02 units in
the L∗ axis, 0.15 units in the a∗ axis and 0.08 units in the b∗ axis, compared with
measured (L∗, a∗, b∗) values. All measurements are carried out under illuminant
D50 and a 2◦ standard observer. No polarization filters are turned on. The in-
strument shows good accuracy over months of repetitive measurements of the same
absolute white point, ∆E < 0.4.

The recording apparatus used in the calibration process is a typical flat bed
scanner “EPSON EXPRESSION 1680 Pro”. The scanner’s maximum resolution is
1600 dpi, and all the calibration tests are conducted with a resolution of 300 dpi.
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The manual does not specify any colorimetric accuracy figures, which implies that
the scanner is non-colorimetric, i.e. it is not able record values as a standard observer
would, see Section 2.1.2. Using a non-colorimetric scanner, we have to assume that
it suffers from characteristic flaws [22], i.e. “Boundary effects”, “Unsuitable scanner
R,G,B sensibilities” and “Neighbourhood influence on scanned pixel values”. These
flaws may, in the worst case, result in an inherit cumulative error of 5 ≤ ∆E ≤ 10,
which can not in a simple way be compensated for in the calibration process.

3.2 Material

3.2.1 Reference material

The reference calibration material used is the industrial standard calibration chart
IT8.7/2-1993 [1], see Figure 3.1. It contains 288 (L∗, a∗, b∗) points where some of
the values are mandatory according to the IT8 specification and some are defined
by the manufacturer of the calibration chart. The mandatory points are evenly
spread in middle of (L∗, a∗, b∗) colour gamut, while the manufacturer’s consist of
basic colours (cyan, magenta, yellow, red, green and blue), whose coordinates start
in the outer parts of the colour gamut and are continuously evenly spread through
the hole gamut. To extend the reference material, 50 additional calibration patches
were added. The extra patches are colours defined by the “Natural Colour System”
[25], [4], and are shown in Figure 3.2. Both calibration charts have been measured
with GREGTAG and saved in ASCII format according to the IT8 specification [1].
When finding the calibration function, combinations of different setups of reference
materials are evaluated, i.e. calibration is made with either one or both calibration
charts.

3.2.2 Verification material

To verify the accuracy of the calibration, two different printed colour tests was
used. The first test, see Figure 3.3, contains 40 samples from a IT8 printed with
halftone colours. The second test was made up of 8 patches, see Figure 3.4, printed
with full tone colours on 3 different types of paper with varying gloss properties,
consequently, adding up to 24 samples in the batch. The amount of gloss was
greatest in the first type of paper, and of decreasing quantities in the others, where
the last type of paper showed the least glossiness. The printed tests were measured
by the GREGTAG instrument in the same way as the reference calibration material.
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Figure 3.1. IT8.7/2-1993.
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Figure 3.2. NCS surfaces.

17



Figure 3.3. Verification of the calibration using 40 samples from a IT8 printed
with halftone colours. The white circles marks the outliers in calibration process, see
Section 4.1.2.

Figure 3.4. Verification of the calibration using 8 full tone colour patches printed
on 3 different type of papers with varying glossiness.
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3.3 Grey balancing

Due to uneven spectral sensitivities in the scanner’s sensors, it will record unbal-
anced grey levels. This can be compensated for by using grey balanced RGB values.
Grey balanced RGB values may or may not be included in the calibration process,
see Section 5.1 for further discussions. The Grey balanced RGB is defined [14] by
setting:

R = G = B = Y (or = L∗). (3.1)

The Y - or L∗-values are grey scale reference values ranging from the absolute
white point down to maximum density of the calibration chart, i.e. black colour. For
example, such grey scale values are laid out on lover part of IT8.7/2-1993, Figure
3.1. Least-squares methods are used to fit the curves shown in Figure 3.5. The
relation between (R, G,B)- and Y -values is expressed in Equation 3.2 and shown
in the upper plot of Figure 3.5, and the Equation 3.3 which expresses the relation
between (R,G,B)- and L∗-values, is shown in the lower plot of Figure 3.5. Then,
to obtain Grey balanced RGB values, either Equation 3.2 or Equation 3.3, of the
fitted curves are applied on all (R,G,B) values recorded by the scanner.

y = c1 + c2 x (3.2)

y = c3 + c4
3
√

x (3.3)
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Figure 3.5. Upper plot shows relation between (R, G, B)- and Y -values, and the
lower plot shows the relation between (R, G, B)- and L∗-values.
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3.4 Calibration methods

Previous work done on colour scanner calibration techniques, described in [27],
[22],[14], [15], [16] and [9], is the basis of determining the calibration function,
Fscan, in Equation 2.12. The calibration process is illustrated in Figure 3.6 and
is further described in Section 2.3.2. The reader may notice that the calibration
procedure goes in one way up to the point where the accuracy of the calibration
is determined by comparison of calculated and measured CIE values, e.g. using
Equation 2.9. The calibration function Fscan may either map (R,G,B) values to
CIE (X, Y, Z) values, or directly map (R,G,B) values to CIE (L∗, a∗, b∗) values.
The former values of mapping is then converted to (L∗, a∗, b∗) values via Equations
2.5, 2.6 and 2.7. Verification of the calibration is done in two steps. First, (L∗, a∗, b∗)
values from scanned and measured calibration chart are compared, Step 4 and 5
in Figure 3.6. Secondly, other samples with, e.g. varying gloss properties which
significantly differs from the calibration charts are scanned, evaluated with Fscan

and then compared with the measured values.

Step 1.
Input

document

Step 2.
Scanner
RGB

Step 3.
Calibration
Fscan

Step 4.
Calculated

CIE Metrics
X, Y, Z or

L∗, a∗, b∗

Step 5.
Measured

CIE Metrics
X, Y, Z or

L∗, a∗, b∗

�
�
�
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�
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�
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�
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��+

��������:
≈

Figure 3.6. Workflow of calibration process.
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3.4.1 Linear polynomial calibration

A linear polynomial calibration assumes the existence of a linear relationship be-
tween the scanner’s (R,G,B) colour space and the colorimetric (X, Y, Z) colour
space, which in this case is the only possible target colour space. An alternative
would be using (L∗, a∗, b∗) space as target, which in this case is not possible because
of its inherit non-linearity. The linear relationship is expressed as: R1 G1 B1

...
...

...
RM GM BM


 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ≈

 X1 Y1 Z1
...

...
...

XM YM ZM

 (3.4)

where M is the number of samples in the calibration chart. A Least-squares method,
see Appendix A, is then applied to find the coefficients a11 . . . a33 of the matrix, and
the final (L∗, a∗, b∗) values are calculated with Equations 2.5, 2.6 and 2.7.

3.4.2 Calibration with artificial neural network

An artificial neural network, ANN, can be seen as a black box that “learns” a
function by evaluating the relationship between a set of input data (R,G,B), called
patterns, and output data (L∗, a∗, b∗), called targets. The black box mostly contains
weights, actually real numbers, that are adjusted during the iterative process of
training. After the training the ANN is ready to evaluate unseen input data, i.e.
act like a mathematical function. This type of training, where the correct pattern
and target relationship is evaluated a priori, is called supervised learning. There are
also other types of ANN:s which learns only from the input data, called unsupervised
learning. This thesis only deals with the former type. A well trained ANN should
be able to generalize unseen data correctly, see Figure 3.9. In other words, the ANN
should be able to evaluate noisy input data the same way as if the data would have
been seen without noise.

The idea of an artificial neural network is to imitate the behaviour of the neurons
in the human brain. The brain contains millions of neurons interconnected to each
other where one neuron is affected through input from other neurons. This model is
adapted into ANN, where the neuron is represented by the more simplified node, see
Figure 3.7. The node in Figure 3.7 contains inputs x1, x2, · · · , xM and the bias b = 1.
The input is represented as a column vector x and output target is represented by
vector y. Every input component xi is multiplied with a weight wi, whose values
are real numbers. Then, the activation of the node is calculated as the weighted
sum of its inputs:

a(x) =
M∑
i=1

wixi + θ, where θ = wM+1 b. (3.5)

The last term θ is the product of the bias, which is tied to b = 1, and the bias
weight wM+1. The correct value of wM+1 is obtained during training. The value of
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θ determines the offset in the activation function, φ(a), where the activation, a(x),
is fed into to the activation function whose output e.g. ranges from −1 ≤ y ≤ +1,
see Figure 3.7. The shape of the activation function determines how strongly the
Node should respond. The activation function can also be piecewise linear, or a -1
to +1 threshold function.

Several vertically aligned nodes form a layer, which further can be connected to
subsequent layers, see Figure 3.8. Indices i, j, k are used when referring to current
layer j, previous layer i and next layer k. In the scanner calibration, a two layer
feed forward net with back-propagation was used. In literature, the first input layer
is not counted and the net used is of feed forward type where the signal propagates
from left to right, i.e. there are no feedback loops from output to inputs nodes. The
learning algorithm is referred to as back-propagation.

Σ

Node Activation
function

θi

b=1

x1

x2

xM

x3
y1

w
1

w
2

w3

w M
+1

w M

a(x)=Σ

a

 

y=φ(a)

1

-1

Figure 3.7. A node and the activation function in a artificial neural network.

Training the network

Here follows an overview of the theory involved in the training process. The inter-
ested reader may study the details about the back-propagation algorithm in [10],
Bayesian learning in a feed forward ANN in [5], and the use of Levenberg-Marquardt
algorithm when updating the weights in [8].

Training a network consists of presenting a set of patterns and targets in the
form {p1, t1}, {p2, t2}, · · · , {pQ, tQ}. Then the back-propagation is applied, which
consists of two distinct passes of computation: the first referred to as the forward
pass, and the second referred to as the backward pass. During the forward pass
the input pq is evaluated in the same way as a net that have completed training,
i.e. with the weights remaining unaltered. Then, the backward pass changes the
weights according to the calculated error. The backward pass changes the weights
starting from the right nodes and propagating the changes to the left nodes.

The basic school book back-propagation algorithm is shown in Table 3.1, fol-
lowed by the modified algorithm presented by Foresee and Hagan [5], shown in Table
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3.2. Before we continue we should define a measure of how well the net is trained,
i.e calculating the cost function, see Equation 3.6, which should be minimized.

The main purpose of the modified algorithm is to achieve good generalization
capabilities, i.e. to avoid over fitting, see Figure 3.9. In other words, we want to find
the correct mapping function during learning even though the input data is noisy.
One building block in this process is regularization theory, proposed by Tikhonov
in 1963 and another one is the use of Bayes’ rule. The idea of regularization theory
is that we can make the assumption that the input-output mapping function is
smooth. Regularization theory will add an additional term to the cost function, see
Equation 3.7, the sum of squared weights EW which stabilizes the solution.

The modified algorithm uses Equation 3.8 as cost function, which also should
be minimized. This is shown, using Bayes’ rule, in [5]. Further, Bayes’ rule is
also used to calculate the most optimum values of α and β. The algorithm uses
regularization with Bayes’ rule to minimize the cost function F = βED +αEW , and
the Levenberg-Marquardt algorithm to update the weights:

ED =
1
2

Q∑
q=1

(tq − yq)2, (3.6)

EW = ‖w‖2
2, (3.7)

F (w) = βED + αEW , (3.8)

where w = [w1
11, w

1
12, · · · , w1

JI , b
1
1, · · · , b1

J , · · · , wL
11, · · · bL

J ]T ,
and wm

ji is the jith weight in the lth layer
of totally n weights and L layers.
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Figure 3.8. A principal sketch of a two layer feed forward artificial neural network.
Indices i, j, k are used when referring to current layer j, previous layer i and next
layer k. Notice the reversed order of indices which is the standard used in literature.

Figure 3.9. Left, a over fitted network. Right, a well generalized network.
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Table 3.1. School book back-propagation algorithm.

1. Initialise weights randomly or use some other known method, e.g. Nguyen-
Windrow method [21].

2. Present the input data in the nth iteration.

3. Perform the forward pass, i.e. calculate the output y
(l)
j for the jth node in

the lth layer, where j = 1, 2, . . . , N and l = 1, 2, . . . , L. N is the number of
nodes in the lth layer and L is the number of layers.

• y
(l)
j = φ(l)(a(l)

j )

• a
(l)
j =

∑M
i=1 w

(l)
ji y

(l−1)
i + w

(l)
j(i+1) b(l)

• Input xi = y
(0)
i , and Output yj = y

(L)
j

4. Start the backward pass with the computation of the output error signal:
e
(L)
j = tj − y

(L)
j for all js in the rightmost layer L.

5. Compute the local error gradient δj where

δ
(l)
j =


e
(L)
j φ′j(a

(L)
j ) when l = L otherwise:

φ′j(a
(l)
j )

∑O
k=1 δ

(l+1)
k w

(l+1)
kj .

(3.9)

O is the number of nodes in the kth layer and φ′ is the differentiate of the
activation function. This requires that the activate function must be differen-
tiable.

6. Adjust the weights according to the generalized delta rule [24]:

∆w
(l)
(n+1)ji = α∆w

(l)
(n)ji + ηδ

(l)
j

w
(l)
(n+1)ji = w

(l)
(n)ji + ∆w

(l)
(n+1)ji

(3.10)

where α ≈ 0.9 is momentum term, and η ≈ 0.01 is the learning rate.

7. Iterate steps 2 through 6 until convergence is obtained.
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Table 3.2. Modified back-propagation algorithm.

1. Initialise α = 0, β = 1 and weights using the Nguyen-Windrow method [21].

2. Evaluate the input during the forward pass and achieve output signal yq.

3. Take one step in the Levenberg-Marquardt algorithm [8] to minimize F (w) =
βED + αEW with respect to w.

4. Compute the effective number of parameters γ = N − 2α tr(H)−1, where H
is Hessian matrix approximated in [8] as H = ∇2F (w) ≈ 2βJTJ + 2αI. N is
the number of free parameters, i.e. the size of w. Matrix J is the Jacobian
matrix, see Appendix B.

5. Compute new estimates for α = γ
2ED(w) and β = N−γ

2ED(w)

6. Iterate steps 2 through 5 until convergence.

The implementation of ANN

The setup of the ANN consists of two layers, 3 input nodes, 8 to 10 hidden nodes and
3 output nodes. The implementation of the modified algorithm used is MATLAB’s
Neural Network Toolbox (version 4.0.2, R13). This implementation differs in one
aspect from the examples described in [5]. In the implementation, the parameters
ED and EA do not stay constant with the increasing number of hidden nodes, as they
do in [5]. However, this seems not to be a problem, because the results presented in
4.1.2 are the same when the number of hidden nodes are increased. All inputs are
scaled to [-1,1] interval. The scaling functions, premnnmx and postmnmx, included
with the toolbox has been replaced with functions, normalize and renormalize.
These use the min and max value calculated over all input nodes, instead of, as in
the toolbox, using three separate min and max values for each of the input nodes.
Since each input in ANN corresponds to one of the (R,G,B) channels from the
scanner, where each channel may record a value between 0 and 255, it would be
incorrect to treat each channel as an independent input. This is the case when using
the normalization functions included with the toolbox. The activation function, see
Figure 3.10, in the hidden node is the tansig function:

φ(a) =
2

1 + e−2a
− 1, (3.11)

and for the output nodes, the purelin function:

φ(a) = a. (3.12)
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Figure 3.10. Top, activation function used in hidden nodes. Bottom, activation
function used in output nodes.
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3.4.3 Non-linear polynomial regression

This calibration is based on the methodology described by Kang [14], [15] and
Hardeberg [9]. The approach is similar to the linear calibration, Section 3.4.1, with
the exception that the polynomials are non-linear. Multiple regression is applied on
the non-linear polynomial to find Fscan, Equation 2.12. We start with a multiple
regression of a six term polynomial,

P (R,G,B) = a1R + a2G + a3B + a4RG + a5GB + a6RB, (3.13)

which is written as an overdetermined system of equations of M inputs in matrix
form:

 R1 G1 B1 RG1 GB1 RB1
...

...
...

...
...

...
RM GM BM RGM GBM RBM




a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

a51 a52 a53

a61 a62 a63

 ≈

≈

 X1 Y1 Z1
...

...
...

XM YM ZM

 . (3.14)

This is solved with QR-factorisation, see Appendix A. Then, the polynomials are
extended with additional terms, more exactly 11, 14 and 20 terms, which is shown
in Equations 3.15, 3.16 and 3.17. The reason for this is that we want to improve
the accuracy of conversion from (R,G,B) to the independent CIE colour spaces,
(X, Y, Z) or (L∗, a∗, b∗). Finally, we also pre-process the (R,G,B) values by ex-
tracting the third root, 3

√
RGB.

P (R,G,B) = a0 + a1R + a2G + a3B + a4RG + a5GB +
+ a6RB + a7R

2 + a8G
2 + a9B

2 + a10RGB (3.15)

P (R,G,B) = a0 + a1R + a2G + a3B + a4RG + a5GB + a6RB+
+a7R

2 + a8G
2 + a9B

2 + a10RGB + a11R
3 + a12G

3 + a13B
3 (3.16)

P (R,G,B) = a0 + a1R + a2G + a3B + a4RG + a5GB + a6RB+
+a7R

2 + a8G
2 + a9B

2 + a10RGB + a11R
3 + a12G

3 + a13B
3 +

+a14RG2 + a15R
2G + a16GB2 + a17G

2B + a18RB2 + a19R
2B (3.17)
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Chapter 4

Results

4.1 Results of different calibration methods

The first type of measurement on how well a calibration method performs is done
on the reference calibration sheet, see Section 3.2.1. In other words, a verification
of the calibration function is done on the same data that was used to establish
the calibration. The second type of evaluation is carried out on the verification
material described in Section 3.2.2. This type of material is used as an indicator of
the accuracy of the calibration process that resembles a real world situation where
other factors, described in second paragraph of Section 3.1, affect the result.

Calibrations are both done towards the (X, Y, Z) and (L∗, a∗, b∗) colour space.
When calibration is done using (L∗, a∗, b∗) colour space and polynomial calibration,
the input data, (R,G,B) scanner values, is pre-processed by extracting the third
root, i.e. 3

√
RGB. In cases when calibration is carried out with artificial neural

networks, the input data is instead normalized to values in the [-1,1] interval.
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4.1.1 Linear polynomial calibration

In the first case, the calibration is carried out via (X, Y, Z) colour space and then
mathematically transformed, using Equations 2.5, 2.6 and 2.7. In the second case,
we use (L∗, a∗, b∗) as the target colour space. The results of two different colour
space targets are shown in Figure 4.1. In Figure 4.1 ∆E is shown, calculated
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Figure 4.1. Result of linear polynomial calibration using (X, Y, Z) and (L∗, a∗, b∗)
colour space.

according to Equation 2.9. In the same legend, the maximum, minimum and average
∆E values are also shown. No more test were conducted using the linear polynomial
calibration due to the poor results presented in Figure 4.1. Also, when input data
is grey balanced no improvement in accuracy is achieved.
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4.1.2 Calibration with artificial neural network

We start by evaluating how the ANN performs on the reference calibration material,
see Section 3.2.1. Also, the results with increasing number of hidden nodes are
shown in Figures 4.2 and 4.3. The aim of testing the ANN with different amounts
of hidden nodes is to find the correct threshold, see discussions in Section 3.4.2,
where the number of hidden nodes used above the threshold will not make any
significant improvement of the calibration result. Moreover, we observe, in the
plots on the left sides of Figures 4.2 and 4.3, that calibrating using the intermediate
(X, Y, Z) colour space, give rise to a lot of spikes in the subsequently calculated
(L∗, a∗, b∗) values.
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Figure 4.2. Result of ANN calibration with 7 and 8 hidden nodes. Left side shows
result of calibration via the (X, Y, Z) colour space and the right side shows the cali-
bration made directly towards the (L∗, a∗, b∗) colour space.

The calibration with ANN is also evaluated using the verification material, Sec-
tion 3.2.2, which consist of 40 coloured halftone samples and the results are pre-
sented in Figure 4.4. The calibration is carried out directly towards (L∗, a∗, b∗)
colour space. The mean colour difference, ∆Emean, using either 288 or 338 ref-
erence samples, is 3.19 and 2.96 respectively, i.e. a difference of 0.23 units. The
maximum colour difference error, ∆Emax, in the case of 288 and 338 reference sam-
ples used, is 10.47 and 8.94 respectively, which results in a difference of 1.53 units.
The maximum error belongs to one of three peaks, numbered 17, 30 and 34, in
Figure 4.4. The three outliers are saturated greenish colours which are marked with
circles in Figure 3.3 on page 18.
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Figure 4.3. Result of ANN calibration with 15 and 20 hidden nodes. Left side shows
the result of calibration via the (X, Y, Z) colour space and the right side shows the
calibration when carried out directly towards the (L∗, a∗, b∗) colour space.
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Figure 4.4. Verification of ANN calibration – Scanned halftone prints. Left and
Right side shows the result of using 288 and 338 reference samples respectively.
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The second type of verification material, described in Section 3.2.2, was also
used to verify the accuracy of the ANN method. The material consists of 8 full tone
colour patches printed on 3 different types of papers. The colours in this material
are located close to the boundaries of the (L∗, a∗, b∗) colour space, where maximum
colour gamut is defined by the reference calibration material.
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Figure 4.5. Verification of ANN calibration – Scanned full tone prints.

The first run using the IT8 as the calibration reference, see Section 3.2.1, resulted
in a ∆Emean and ∆Emax of 5.81 and 16.32 units, see Figure 4.5. To improve the
calibration, the additional 50 NCS surfaces was added to the calibration reference
material. The results from the calibration with the extended material are presented
in Figure 4.6. There is an improvement of the ∆Emean from 5.81 to 5.69 and ∆Emax

from 16.32 to 15.91 shown on the left side of Figure 4.6. Moreover, when performing
the grey balancing, see right hand side of Figure 4.6, the ∆Emean was slightly worse,
a value of 5.96, when compared using the 288 reference samples. Although, grey
balanced RGB values gave the so far lowest value of ∆Emax, 15.57. The outlier that
mostly contributes to the overall error is the third sample, which also, in this case
is greenish as in the previous test with halftone prints shown in Figure 3.3.
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Figure 4.6. Verification of ANN calibration – Scanned full tone prints. In this case
left side contains 338 reference samples and the right side also includes grey balancing.
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4.1.3 Non-linear polynomial regression

As in the previous Section, we start to evaluate the calibration methods using the
reference material described in Section 3.2.1. We begin with a 6 term polynomial
to find the calibration function, and then extend the polynomial to 11, 14 and 20
terms, as described in Section 3.4.3. The result of using 6 and 11 terms is presented
in Figure 4.7. From the upper left plot in Figure 4.7 we can read out that the
∆Emean and ∆Emax is 2.68 and 17.83 respectively. These results are based on the
case when the calibration is carried out via the intermediate (X, Y, Z) colour space.
To the right in same figure, using the (L∗, a∗, b∗) colour space as target calibration,
we observe that ∆Emean and ∆Emax is 3.96 and 20.92 respectively. In the lower

0 50 100 150 200 250
0

5

10

15

20

dE

Poly 3x6 RGB−>XYZ−>L*a*b*

288 sam. dE, cal_type=4, via_xyz=1

 
dE

mean
=2.6785

dE
max

=17.8277
dE

min
=0.43021

0 50 100 150 200 250
0

5

10

15

20

25

30

dE

Poly 3x6 RGB−>L*a*b*

288 sam. dE, cal_type=4

 
dE

mean
=3.9651

dE
max

=20.9185
dE

min
=0.36806

0 50 100 150 200 250
0

5

10

15

20

dE

Poly 3x11 RGB−>XYZ−>L*a*b*

288 sam. dE, cal_type=4, pol_size=11, via_xyz=1

 
dE

mean
=1.5022

dE
max

=16.05
dE

min
=0.039806

0 50 100 150 200 250
0

5

10

15

20

dE

Poly 3x11 RGB−>L*a*b*

288 sam. dE, cal_type=4, pol_size=11

 
dE

mean
=1.7571

dE
max

=13.8523
dE

min
=0.25281

Figure 4.7. Result of non-linear polynomial calibration with 6 and 11 terms.

left and lower right plots, of Figure 4.7, are the results of calibration with 11 term
polynomial presented. The results of ∆Emean and ∆Emax are 1.50 and 16.05, using
the intermediate (X, Y, Z) colour space, and using target (L∗, a∗, b∗) colour space,
we obtain a ∆Emean equal to 1.75 and a ∆Emax equal to 13.85. The difference
between using the intermediate (X, Y, Z) colour space and the target (L∗, a∗, b∗)
colour space is 0.25 units lower in ∆Emean with the former type of calibration and
2.2 units lower in ∆Emax with the latter type of calibration.

Verification of the calibration with 14 and 20 terms is presented in Figure 4.8.
We see that results of ∆Emean and ∆Emax, using the intermediate (X, Y, Z) colour
space with 14 term polynomial, are 0.96 and 4.52. The corresponding result of using
the target (L∗, a∗, b∗) colour space are 1.43 and 7.00, seen in the upper right plot of
Figure 4.8. The results from the last type of calibration with a 20 term polynomial
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are presented in lower part of Figure 4.8. The left plot shows the results of using
the intermediate (X, Y, Z) colour space, which are 0.85 and 4.49 for ∆Emean and
∆Emax. In the right plot are the results, when using the target (L∗, a∗, b∗) colour
space, shown for ∆Emean and ∆Emax which are 0.72 and 2.62. Using the target
(L∗, a∗, b∗) colour space, we obtain lower values for both ∆Emean and ∆Emax, which
are 0.13 and 1.88 units lower than using the intermediate (X, Y, Z) colour space.
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Figure 4.8. Result of non-linear polynomial calibration with 14 and 20 terms.

The next results, presented in Figure 4.9 show how the polynomial calibration
with 20 terms performs using the verification data seen in Figure 3.3. On the left
side of the Figure 4.9, we observe that the ∆Emean is 3.11 and ∆Emax is 8.93 using
288 samples in the reference material, see Section 3.2.1. The same verification
material was used to evaluate the same type of calibration on a reference material
extended with 50 NCS surfaces, described in Section 3.2.1, giving a total of 338
samples used in the reference material of the calibration. The results are presented
on the right side of Figure 4.9, yielding a ∆Emean of 2.96 and ∆Emax of 9.1. This
is an improvement of +0.15 units and an impairment of -0.17 units compared with
the 288 samples verification calibration used. The outliers, sample 17, 30 and 34,
seen in Figure 4.9 are the same as the ones observed in Figure 4.4, and described
in Section 4.1.2.
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Figure 4.9. Verification of polynomial calibration – Scanned halftone prints. Left
and Right side shows the result of using 288 and 338 reference samples respectively.
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The last type of verification is made on the 24 full tone colour patches, described
in Section 3.2.2 and seen in Figure 3.4. The results from this test are presented in
Figure 4.10. The ∆Emean and ∆Emax is 6.39 and 15.58 respectively. Also, the
same outlier, sample number 3, is observed as in Figure 4.5. In the same figure,
looking at upper right plot, which shows the a∗ coordinate axis, we see that most of
the fluctuations of the errors originates from ∆a∗ contribution. The IT8 is used as
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Figure 4.10. Verification of polynomial calibration – Scanned full tone prints.

reference material in the calibration, and to improve the calibration for these specific
samples, we add the 50 NCS surfaces, described in Section 3.2.1 to the reference
material. Moreover, to see if any improvement in the calibration process could be
achieved, the scanned (R,G,B) values were also grey balanced. The results from
these modifications are presented in Figure 4.11. In the figure, it can be observed
that, in case of non grey balanced and grey balanced (R,G,B) values, the ∆Emean

and ∆Emax are the same, i.e. 5.90 and 15.21.

4.1.4 A summary of the results

Here follows a summary of the resutls from the ANN and the non-linear polynomial
calibration. The results from both types of methods, calibration with reference and
verfication material, are presented in Table 4.1. In Table 4.1, only the results from
calibrating towards the (L∗, a∗, b∗) target colour space are presented, see Section
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Figure 4.11. Verification of polynomial calibration – Scanned full tone prints. In
this case left side contains 338 reference samples and the right side also includes grey
balancing.

5.1 for more discussions. A dash in the verification material column of Table 4.1
denotes calibration with only the reference material.
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Table 4.1. A summary of the results of polynomial and ANN calibration methods,
using (L∗, a∗, b∗) as the target colour space.

Method Ref. material Ver. material ∆Emean ∆Emax

ANN 7 h. nodes 288 samples – 1.00 3.04
ANN 8 h. nodes 288 samples – 0.91 2.54
ANN 15 h. nodes 288 samples – 0.80 2.48
ANN 20 h. nodes 288 samples – 0.77 2.35
ANN 10 h. nodes 288 samples 40 samples 3.19 10.47
ANN 10 h. nodes 338 samples 40 samples 2.96 8.94
ANN 10 h. nodes 288 samples 24 samples 5.81 16.32
ANN 10 h. nodes 338 samples 24 samples 5.69 15.91
ANN 10 h. nodes
with grey balancing 338 samples 24 samples 5.96 15.57
Pol. 6 terms 288 samples – 3.96 20.92
Pol. 11 terms 288 samples – 1.75 13.85
Pol. 14 terms 288 samples – 1.42 7.00
Pol. 20 terms 288 samples – 0.72 2.62
Pol. 20 terms 288 samples 40 samples 3.11 8.93
Pol. 20 terms 338 samples 40 samples 2.96 9.10
Pol. 20 terms 288 samples 24 samples 6.39 15.58
Pol. 20 terms 338 samples 24 samples 5.90 15.21
Pol. 20 terms
with grey balancing 338 samples 24 samples 5.90 15.21
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Chapter 5

Discussions and conclusions

5.1 Discussions

5.1.1 Calibrate towards (X, Y, Z) or (L∗, a∗, b∗) colour space?

The first question that probably has arised so far is: should we use the (X, Y, Z)
or the (L∗, a∗, b∗) colour space as target in the calibration process? The reason for
asking this question is that when carrying out calibration tests using the interme-
diate (X, Y, Z) colour space, large errors have been observed in colours with low
(X, Y, Z) values. To find the cause of these erros, we investigate the sensitivity of
Equations 2.5, 2.6 and 2.7. Further, we assume that we have scanned the IT8, see
Figure 3.1, and want to verify the calibration function using the reference material.
If we assume a worst case scenario where there is e.g. interference in the recording
process which give rise to an absolute error of +0.5 units in the Y component and
-0.5 units in the Z component, and where the X component is intact. Then, we
evaluate the disturbed and undisturbed input with Equations 2.5, 2.6 and 2.7 and
calculate, using Equation 2.9, the Euclidean distance between the compared inputs.
The result of these calculations are presented in Figure 5.1. The plots in Figure 5.1
indicate a varying magnitude of the error ranging over the whole colour gamut of
the IT8. The grey scale patches in the lower part of the IT8 are achromatic, i.e. the
X, Y and Z components have approximately the same values. Looking at error of
the grey scale patches, right side of Figure 5.1, we observe that the error increases
with smaller magnitudes of (X, Y, Z) values. The conclusion that we can make from
this observation is that the same disturbance in the input will have a greater impact
on the erros of colours with low luminance, i.e. have low (X, Y, Z) values. In other
words, the mathematical transformation from (X, Y, Z) colour space to (L∗, a∗, b∗)
colour space is ill conditioned, see discussions in [11].

The results from Figure 5.1 also explain most of the spikes seen on the left sides
of Figures 4.2 and 4.3 when calibration are carried out with the artificial neural
network. Since the goal of the ANN, see Section 3.4.2, is to find a generalized
function, the points in the function chosen by the ANN will induce an error that is
propagated and increased through the mathematical transformation from (X, Y, Z)
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Figure 5.1. Left, the IT8 with disturbed input. Right, a close up of disturbed grey
scale patches.

to (L∗, a∗, b∗).
The same type of errors are also seen on the left side of Figure 4.7 when using

a polynomial calibration with 6 and 11 terms. When using a 14 and 20 term
polynomial, see left side of Figure 4.8, the error decreases substantially, and it
seems that using the intermediate (X, Y, Z) colour space with 14 term polynomial
will yield a better result than directly calibrating towards the (L∗, a∗, b∗) colour
space, which results are seen on upper right side of Figure 4.8. However, in the
case of using a 20 term polynomial the results are better with the target (L∗, a∗, b∗)
colour space, presented on the lower right side of Figure 4.8. The improved result
using the 14 term polynomial is due to that the function in this case closer fits the
actual points of the reference calibration material. Nevertheless, if the input data is
slightly disturbed in same way as described in beginning of this section, the result
of the calibration will not be satisfactory.

Finally, the condition number of the matrix calculated in Equation 3.17 when
using multiple regression, is less than 3. In reality, compared with the sensitivity
of calculated (L∗, a∗, b∗) values, this means that a small relative change in input
results in a small relative change in output. In other words, the calculated matrix,
using the (L∗, a∗, b∗) as target colour space, in the polynomial curve fit is much more
robust than calculating (L∗, a∗, b∗) values using the intermediate (X, Y, Z) colour
space.
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5.1.2 Analysis of calibration with verification material

By analysing the results from the verification of the calibration, we obtain similar
results, presented in Figures 4.4, 4.9, 4.5 and 4.10, when either using artificial
neural networks or multiple regression of polynomials. The average results of the
calibration presented in Figures 4.4 and 4.9, are good, i.e. they meet the goal of
desired accuracy of the calibration which is a ∆E < 5. The overall error seen in
Figures 4.5 and 4.10 almost meets the goal, but where the errors of the individual
samples fluctuate, we try to investigate the cause of those.

A closer look at the results from the calibration test with the 40 halftone colours,
seen in Figure 4.4 and 4.9, indicate the same outliers, i.e. sample 17, 30 and 34.
Since we have used two independent approaches, it is highly improbable that error
originates from the actual calibration method. One reason to this error, could be
that the coordinates of the samples lay outside the colour gamut of the IT8. How-
ever, extending the reference material with the 50 NCS surfaces, whose (L∗, a∗, b∗)
points enclose all the points of 40 halftone colours, does not yield any substan-
tial improvements, see results on the right side of Figures 4.4 and 4.9. Still, there
are fewer reference sample points in the outer parts than the inner parts of the
(L∗, a∗, b∗) colour space, see [1]. The largest contributing factors to the errors are
the flaws that non-colorimetric scanners suffers from, see Sections 2.3.1 and 3.1.

Now, analysing the results from the calibration, using the second type of verifi-
cation material, i.e. the 24 full tone colour in Figure 3.4, we observe, in Figures 4.5
and 4.10, the same fluctuations of the errors. Also extending the reference material
with the 50 NCS surfaces and performing grey balancing only slightly improves the
results, presented in Figures 4.6 and 4.11. Let us therefore compare two almost
identical (L∗, a∗, b∗) coordinates with their corresponding scanned (R,G,B) values.
The (L∗, a∗, b∗) coordinates have been measured with the GREGTAG instrument,
see Section 3.2.2. If the scanner is consistent both the corresponding (R,G,B) val-
ues should approximately be the same. In this case we compare the largest outlier,
the green sample number 3 with the green sample 11 whose (L∗, a∗, b∗) values are
[52, -61, 27] and [53, -67, 25] respectively, where the corresponding (R, G,B) values
are [30, 89, 44] and [18, 81, 34]. At the first glance, we see that the R and B coor-
dinates are much higher in the third sample, and doing a backward transformation
from (L∗, a∗, b∗) to (R,G,B) indicates that a consistent value approximately should
have been [18, 84, 33]. When visually examining the deviating sample, small bright
areas are seen, which are strengthen under a certain viewing angle. The spectral
sensors in a scanner are placed in an angle that is different from the gloss angle.
But in this case, the viewing angle of the bright areas seen is different from the
gloss angle. A reasonable explanation to this error is that the bright, glossy, areas
contribute to the average luminance, and thereby yielding higher (R,G,B) values.
Such type of problems are related to the construction of the scanner and are difficult
to compensate for in the calibration process.
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5.2 Conclusions

We have evaluated a couple of calibrations methods starting with a simple linear
curve fit and ending with a multiple regression of a 20 term polynomial, the lat-
ter showing satisfying accuracy. Artificial neural network has also presented good
results and suggests that the polynomial approach is appropriately implemented.
Moreover, the Bayesian ANN has, opposite to the results presented in [16], shown
good generalization properties. When comparing the performance of ANN with the
other methods, it demands more computational time in the training process. An
ANN with 10 hidden nodes takes approximately 20 seconds to train on a standard
PC of today, whereas evaluation of input data is as good as in the case of the poly-
nomial method. However, both methods will be computer and memory demanding
on large input data, in which case it is advisory to pre-evaluate input data with one
of the presented methods and enter the results in a 3D look-up table. A 3D look-up
table is e.g. of size 9 × 9 × 9 and uses some known interpolation method [15], to
find values in between the pre-evaluated points. Finally, when it comes to choosing
between the ANN and the 20 term polynomial calibration, we recommend to use
the latter because of its simple implementation.

The two best performing calibration methods, multiple regression with a 20
term polynomial and Bayesian artificial neural network has shown high accuracy,
i.e. ∆Emean < 1, when evaluating the methods on the reference material, see Figures
4.3 and 4.8, and ∆Emean < 4 when using the verification material, see Figures 4.4
and 4.9. We should not use the intermediate (X, Y, Z) colour space, but instead
directly use the (L∗, a∗, b∗) as the calibration target. Preprocessing the input with
grey balancing did not improve the calibration results in neither case, which means
that it can be left out. The results have shown that observed errors mostly depend
on external factors e.g. inconsistent recording of RGB values in the scanner which
is due to the type of dye set and coating used, and to the reflective and transmissive
characteristics of the samples [15].

Further, most of the calibration methods, described in [27], [16],[14] and [9], use
the reference material to verify the accuracy of the calibration. This is a correct
approach when we initially want to mathematically verify the accuracy of the cal-
ibration method in use. However, we have also chosen to extend the test of the
calibration method by using the verification material, see 3.2.1, whose points differ
from the reference material in (L∗, a∗, b∗) colour space, and thereby testing the gen-
eralization capabilities of the method. We also obtain results that better correspond
to the aimed use of the calibration, see Section 1.1.

Additional work on this thesis could be to use other type of reference material.
The reason for this is that the design of the IT8 has been aimed to “provide a
reasonable measure of color gamut that is within the capability of modern color
photographic papers”, stated in [1]. In other words, the IT8 has been designed for
calibration when scanning photographs. Since, we are interested in applying the
calibration when measuring colour print mottle on printed paper consisting of full
tone colours, it would be a good idea to manufacture a calibration chart with similar
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surface properties as the samples that are to be measured. Also, in this case, the
saturation of colours are higher on printed paper than on photographic paper used
by the IT8. Another objection to the IT8 is that most of the mandatory points,
see Section 3.2.1, are located close to the L∗ axis, i.e. the fewer points in the outer
parts of the (L∗, a∗, b∗) colour space.

The results presented in this thesis show that the calibration in some cases is
highly accurate, see Figure 4.9 and in other cases slightly less accurate, see Figure
4.10. Nevertheless, as we are interested in examining the variations around a point,
i.e. colour print mottle, in (L∗, a∗, b∗) colour space, it is not necessary to measure the
colours of the scanned material with dead on precision (∆Emean < 1). Therefore,
we are satisfied to be almost correct (∆Emean < 5) in the calibration as long as
the measured samples do not show high glossiness, which can heavily affect the
scanner’s ability to record the correct (R,G,B) values (∆Emean > 10).
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Glossary

B

backward pass Refers to the training step in an Artificial Neural Network where
the weights are altered to find the correct mapping between input and
output data, p. 23.

C

coefficient of variation of reflectance A measure of print mottle which often is
expressed as the ratio between the standard deviation and the mean
value of reflectance, p. 13.

colorimetric A property of a device which detects colours as the CIE standard
observer, p. 16.

colour constancy The human visual system’s ability to perceive the same colour
sensations under different conditions of illumination, p. 3.

condition number The condition number of a matrix is a measure of how close
a matrix is to being singular, i.e. det(A) = 0. A matrix with a large
condition number is nearly singular, whereas a matrix with a condition
number close to 1 is far from being singular, p. 44.

F

forward pass Refers to an evaluation of input in an Artificial Neural Network
where the weights are kept unaltered, p. 23.

full tone Refers to paper printed with full coverage of at least one of the process
colours, CMYK, p. 2.

G

gamut Defines the volume of all possible colours in a given printing environ-
ment, p. 16.
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grey balanced RGB A pre-processing step in calibration, where the scanned RGB
values are calibrated to match a grey level reference, which ranges from
absolute white to black colour, p. 19.

H

halftone Refers to paper where the colour is built up of a grid of raster cells,
where each cell is partially filled with the current colour, p. 16.

J

just noticeable difference (JND) The smallest distinguishable colour difference
that humans can perceive, p. 10.

M

mesopic vision The type of vision that is enabled during medium light conditions,
where both cones and rods are activated, p. 4.

metameric Refers to metamers that are perceived to have the same colour under
certain illumination conditions, p. 9.

metamerism The amount of change in light illumination that is needed to cease
metameric occurrence. A way of grading a metameric environment, p. 9.

metamers Refers to the illuminated objects that participates in a metameric en-
vironment, p. 9.

multiple regression Regression is a method for fitting a curve (not necessarily a
straight line) through a set of points using some goodness-of-fit criterion.
The most common type of regression is linear regression. A multiple
regression is regression of values of a given variable in terms of two or
more other variables, p. 29.

N

neurons Cells in the human body that act as information carrier and transmits
signals between different parts of the body. Most neurons are located
in the brain, p. 22.

P

photopic vision The type of vision that is enabled during high light conditions,
where mostly cones are activated, p. 4.
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S

scotopic vision The type of vision that is enabled during low light conditions,
where only rods are activated, p. 4.
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Appendix A

Least-squares method

A preferable notation in books [17] of least squares data-fitting problem is:

Ax ≈ b (A.1)

In our case, Equation 3.4, presented in A.2, must be rewritten to conform with A.1,
which is done in A.3. R1 G1 B1

...
...

...
RM GM BM


 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ≈

 X1 Y1 Z1
...

...
...

XM YM ZM

 (A.2)



R1 G1 B1 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

RM GM BM 0 0 0
...

...
...

0 0 0 R1 G1 B1
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... RM GM BM 0 0 0

...
...

... 0 0 0 R1 G1 B1
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 RM GM BM





a11

a21

a31

a12

a22

a32

a13

a23

a33


≈



X1
...

XM

Y1
...

YM

Z1
...

ZM


(A.3)

The Least squares solution to Equation A.3 is solved with QR Factorization [17].
This is a factorization of a m× n matrix A into a m× n matrix Q, with property
QTQ = I (Q is orthonormal), and a n × n upper triangular matrix R, i.e. A =
QR. The matrices Q and R are calculated through a number of Householder
Transformations [11]. The least squares solution to Equation A.1 is a minimization
of ‖b−Ax‖2

2, where ‖ · ‖2 is the length of a vector, also called the second norm of
a vector. This expression be rewritten as:

‖b−Ax‖2
2 = ‖b−QRx‖2

2 = ‖QT (b−QRx)‖2
2 = ‖QTb−Rx‖2

2 (A.4)
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The third steps involes a multiplication with a matrix with orthonormal columns,
i.e. ‖QTx‖ = ‖x‖. So, the solution to the least squares equation is:

x = R−1QTb (A.5)

One way to solve Equation A.5 in MATLAB is:

r=size(ptn,1);
A=ptn;
b=trg(:);

A2=[ A zeros(r,3) zeros(r,3)
zeros(r,3) A zeros(r,3)
zeros(r,3) zeros(r,3) A];

[Q R]=qr(A2);
[m n]=size(A2);
RN=R(1:n,:);
QT=Q’;
QNT=QT(1:n,:);
x=inv(RN)*QNT*b;

where x = (a11 . . . a33) or directly by using MATLAB’s \-command:

A=ptn;
b=trg;
X=A\b;

where X = (a11 . . . a33) is of size 3× 3.
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Appendix B

Calculation of the Jacobian matrix

The derivation of the Jacobian matrix in the modified back-propagation algorithm,
see Table 3.2, is similar to the derivation of the error gradient in the school book
back-progation algoritm [2], [10] with the exception of that the result of the former
derivation evaluates the error on the individul output nodes, en, while the latter,
Equation 3.9, evaluates the error of all added nodes, En.

J =


∂e1
∂w1

∂e1
∂w2

. . . ∂e1
∂wN

...
...

. . .
...

∂eM
∂w1

∂eM
∂w2

. . . ∂eM
∂wN

 (B.1)

In Equation B.1, the number of rows M equals the number of training samples Q
multiplied with the number of output nodes, and N is the total number of parame-
ters, i.e. the weights and biases, in the network. It is the same size as w in Equation
3.7. In Equation B.1, the subscripts merly denotes the ordering, e.g. ∂e1

∂w1
is the

parital derivative of the first input sample on the first output node with respect to
the first weight, which would be, according to the previously used notation in Table
3.1, w

(1)
11 .

Error at output nodes

Now, we have to find the expression of the error on the output, starting with looking
at the dependency relations of En, which are shown below. En is the summed error
function over all output nodes in the nth sample and jth output node,

En(e(n)j)

LLLLLLLLLL
yj(aj)

IIIIIIIII
wji

e(n)j(yj)

ttttttttt
aj(wji)

xxxxxxxxx
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and we are interested in finding ∂en
∂wj

. The above relation can be expressed with the
chain rule as:

∂En

∂wij
=

∂En

∂ej

∂ej

∂yj

∂yj

∂aj

∂aj

∂wij
, (B.2)

and by extracting the three right-most factors:

∂ej

∂wij
=

∂en

∂yj

∂yj

∂aj

∂aj

∂wij
, (B.3)

we have aquired the desired expression. The next step is to calcluate each of the
above factors starting from the left with differentiation of Equation B.4, which is
the error in the jth output node,

e(n)j = (t(n)j − y(n)j),
∂ej

∂yj
= −1 (B.4)

and differentiating Equation B.5, which was previously given in Table 3.1.

y
(l)
j = φ(l)(a(l)

j ),
∂yj

∂aj
= φ′j (B.5)

The last differeniation is made on Equation B.6. This Equation is same as Equation
3.5, apart from that the bias term is included in the sum.

a(y) =
M∑
i=1

wjiyi,
∂aj

∂wij
= yi = φi (B.6)

Finally, we gather the above Equations into:

∂e
(L)
j

∂wij
= −1φ′jφi, (B.7)

which is the observed error on the output nodes.
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Error in hidden nodes

The next step is to look at the error in the hidden nodes, where the error is back
propagated from the output nodes. So, the error of jth node is dependent of the
error from kth output nodes. This is expressed as:

e
(l)
(n)j =

K∑
k=1

e
(l+1)
(n)k [ or less cluttered] ej =

K∑
k=1

ek (B.8)

for the nth sample. Differentiating Equation B.8 yields:

∂ej

∂wij
=

K∑
k=1

∂ek

∂wij
(B.9)

Then, we look at the variables dependendent of ek,

ek

AA
AA

AA
AA

ak

AA
AA

AA
AA

aj

DD
DD

DD
DD

yk

}}}}}}}}
yj

}}}}}}}
wji.

Using the chain rule again, we are able find the parital derivative of ek with respect
to wij ,

∂ek

∂wij
=

∂ek

∂yk

∂yk

∂ak

∂ak

∂yj

∂yj

∂aj

∂aj

∂wij
(B.10)

The result of the derivation of Equation B.10 is the same as Equation B.7, with the
exception of ∂ak

∂yj
which is done in the following way:

ak =
M∑
i=1

wkjyj ,
∂ak

∂yj
= wkj (B.11)

Now, we evaluate each of the factors in B.10, using Equations B.4, B.5, B.11 , B.6
and B.9 yielding the following expresion:

∂ej

∂wij
= −1 φ′jφi

K∑
k=1

φ′kwkj (B.12)
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